
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321927767
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321927767
https://plusone.google.com/share?url=http://www.informit.com/title/9780321927767
ttp://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321927767
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321927767/Free-Sample-Chapter

Java SE 8 for the Really Impatient

This page intentionally left blank

Java SE 8
for the Really Impatient

Cay S. Horstmann

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their

products are claimed as trademarks. Where those designations appear in this book,

and the publisher was aware of a trademark claim, the designations have been printed

with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make

no expressed or implied warranty of any kind and assume no responsibility for errors

or omissions. No liability is assumed for incidental or consequential damages in

connection with or arising out of the use of the information or programs contained

herein.

For information about buying this title in bulk quantities, or for special sales

opportunities (which may include electronic versions; custom cover designs; and

content particular to your business, training goals, marketing focus, or branding

interests), please contact our corporate sales department at corpsales@pearsoned.com

or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact

international@pearsoned.com.

Visit us on the Web: informit.com/aw

Cataloging-in-Publication Data is on file with the Library of Congress.

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is

protected by copyright, and permission must be obtained from the publisher prior

to any prohibited reproduction, storage in a retrieval system, or transmission in any

form or by any means, electronic, mechanical, photocopying, recording, or likewise.

To obtain permission to use material from this work, please submit a written request

to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle

River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-92776-7

ISBN-10: 0-321-92776-1

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,

Indiana.

First printing, January 2014

To Greg Doench, my editor for two decades, whose patience, kindness,

and good judgment I greatly admire

This page intentionally left blank

Preface xiii

About the Author xv

LAMBDA EXPRESSIONS 11
Why Lambdas? 21.1

The Syntax of Lambda Expressions 41.2

Functional Interfaces 61.3

Method References 81.4

Constructor References 91.5

Variable Scope 101.6

Default Methods 141.7

Static Methods in Interfaces 161.8

Exercises 18

THE STREAM API 212
From Iteration to Stream Operations 222.1

Stream Creation 242.2

The filter, map, and flatMap Methods 252.3

Extracting Substreams and Combining Streams 262.4

Contents

vii

Stateful Transformations 272.5

Simple Reductions 282.6

The Optional Type 292.7

2.7.1 Working with Optional Values 29

2.7.2 Creating Optional Values 30

2.7.3 Composing Optional Value Functions with flatMap 30

Reduction Operations 312.8

Collecting Results 332.9

Collecting into Maps 342.10

Grouping and Partitioning 362.11

Primitive Type Streams 392.12

Parallel Streams 402.13

Functional Interfaces 422.14

Exercises 44

PROGRAMMING WITH LAMBDAS 473
Deferred Execution 483.1

Parameters of Lambda Expressions 493.2

Choosing a Functional Interface 503.3

Returning Functions 533.4

Composition 543.5

Laziness 563.6

Parallelizing Operations 573.7

Dealing with Exceptions 583.8

Lambdas and Generics 613.9

Monadic Operations 633.10

Exercises 64

JAVAFX 694
A Brief History of Java GUI Programming 704.1

Hello, JavaFX! 714.2

Event Handling 724.3

JavaFX Properties 734.4

Bindings 754.5

Contentsviii

Layout 804.6

FXML 864.7

CSS 904.8

Animations and Special Effects 914.9

Fancy Controls 944.10

Exercises 97

THE NEW DATE AND TIME API 1015
The Time Line 1025.1

Local Dates 1045.2

Date Adjusters 1075.3

Local Time 1085.4

Zoned Time 1095.5

Formatting and Parsing 1125.6

Interoperating with Legacy Code 1155.7

Exercises 116

CONCURRENCY ENHANCEMENTS 1196
Atomic Values 1206.1

ConcurrentHashMap Improvements 1236.2

6.2.1 Updating Values 124

6.2.2 Bulk Operations 126

6.2.3 Set Views 128

Parallel Array Operations 1286.3

Completable Futures 1306.4

6.4.1 Futures 130

6.4.2 Composing Futures 130

6.4.3 The Composition Pipeline 131

6.4.4 Composing Asynchronous Operations 132

Exercises 134

THE NASHORN JAVASCRIPT ENGINE 1377
Running Nashorn from the Command Line 1387.1

Running Nashorn from Java 1397.2

ixContents

Invoking Methods 1407.3

Constructing Objects 1417.4

Strings 1427.5

Numbers 1437.6

Working with Arrays 1447.7

Lists and Maps 1457.8

Lambdas 1467.9

Extending Java Classes and Implementing Java Interfaces 1467.10

Exceptions 1487.11

Shell Scripting 1487.12

7.12.1 Executing Shell Commands 149

7.12.2 String Interpolation 150

7.12.3 Script Inputs 151

Nashorn and JavaFX 1527.13

Exercises 154

MISCELLANEOUS GOODIES 1578
Strings 1588.1

Number Classes 1588.2

New Mathematical Functions 1598.3

Collections 1608.4

8.4.1 Methods Added to Collection Classes 160

8.4.2 Comparators 161

8.4.3 The Collections Class 162

Working with Files 1638.5

8.5.1 Streams of Lines 163

8.5.2 Streams of Directory Entries 165

8.5.3 Base64 Encoding 166

Annotations 1678.6

8.6.1 Repeated Annotations 167

8.6.2 Type Use Annotations 169

8.6.3 Method Parameter Reflection 170

Miscellaneous Minor Changes 1718.7

8.7.1 Null Checks 171

Contentsx

8.7.2 Lazy Messages 171

8.7.3 Regular Expressions 172

8.7.4 Locales 172

8.7.5 JDBC 174

Exercises 174

JAVA 7 FEATURES THAT YOU MAY HAVE MISSED 1799
Exception Handling Changes 1809.1

9.1.1 The try-with-resources Statement 180

9.1.2 Suppressed Exceptions 181

9.1.3 Catching Multiple Exceptions 182

9.1.4 Easier Exception Handling for Reflective Methods 183

Working with Files 1839.2

9.2.1 Paths 184

9.2.2 Reading and Writing Files 185

9.2.3 Creating Files and Directories 186

9.2.4 Copying, Moving, and Deleting Files 187

Implementing the equals, hashCode, and compareTo Methods 1889.3

9.3.1 Null-safe Equality Testing 188

9.3.2 Computing Hash Codes 189

9.3.3 Comparing Numeric Types 189

Security Requirements 1909.4

Miscellaneous Changes 1939.5

9.5.1 Converting Strings to Numbers 193

9.5.2 The Global Logger 193

9.5.3 Null Checks 194

9.5.4 ProcessBuilder 194

9.5.5 URLClassLoader 195

9.5.6 BitSet 195

Exercises 196

Index 199

xiContents

This page intentionally left blank

This book gives a concise introduction to the many new features of Java 8 (and

a few features of Java 7 that haven’t received much attention) for programmers

who are already familiar with Java.

This book is written in the “impatient” style that I first tried out in a book called

Scala for the Impatient. In that book, I wanted to quickly cut to the chase without

lecturing the reader about the superiority of one paradigm over another. I pre-

sented information in small chunks organized to help you quickly retrieve it

when needed. The approach was a big success in the Scala community, and I am

employing it again in this book.

With Java 8, the Java programming language and library receive a major refresh.

Lambda expressions make it possible to write “snippets of computations” in a

concise way, so that you can pass them to other code. The recipient can choose

to execute your computation when appropriate and as often as appropriate. This

has a profound impact on building libraries.

In particular, working with collections has completely changed. Instead of spec-

ifying how to compute a result (“traverse from the beginning to the end, and if

an element matches a condition, compute a value from it, and add that value

to a sum”), you specify what you want (“give me the sum of all elements that

match a condition”). The library is then able to reorder the computation—for

example, to take advantage of parallelism. Or, if you just want to have the first

hundred matches, it can stop the computation without you having to maintain

a counter.

xiii

Preface

The brand-new stream API of Java 8 puts this idea to work. In the first chapter,

you learn all about the syntax of lambda expressions, and Chapter 2 gives a

complete overview of streams. In Chapter 3, I provide you with tips on how to

effectively design your own libraries with lambdas.

With Java 8, developers of client-side applications need to transition to the JavaFX

API since Swing is now in “maintenance mode.” Chapter 4 gives a quick intro-

duction to JavaFX for a programmer who needs to put together a graphical

program—when a picture speaks louder than 1,000 strings.

Having waited for far too many years, programmers are finally able to use a

well-designed date/time library. Chapter 5 covers the java.time API in detail.

Each version of Java brings enhancements in the concurrency API, and Java 8 is

no exception. In Chapter 6, you learn about improvements in atomic counters,

concurrent hash maps, parallel array operations, and composable futures.

Java 8 bundles Nashorn, a high-quality JavaScript implementation. In Chapter 7,

you will see how to execute JavaScript on the Java Virtual Machine, and how to

interoperate with Java code.

Chapter 8 collects miscellaneous smaller, but nevertheless useful, features of

Java 8. Chapter 9 does the same for Java 7, focusing on improved exception

handling, the “new I/O” enhancements for working with files and directories,

and other library enhancements that you may have missed.

My thanks go, as always, to my editor Greg Doench, who had the idea of a short

book that brings experienced programmers up to speed with Java 8. Dmitry

Kirsanov and Alina Kirsanova once again turned an XHTML manuscript into

an attractive book with amazing speed and attention to detail. I am grateful to

the reviewers who spotted many embarrassing errors and gave excellent sugges-

tions for improvement. They are: Gail Anderson, Paul Anderson, James Denvir,

Trisha Gee, Brian Goetz (special thanks for the very thorough review), Marty

Hall, Angelika Langer, Mark Lawrence, Stuart Marks, Attila Szegedi, and Jim

Weaver.

I hope that you enjoy reading this concise introduction to the new features of

Java 8, and that it will make you a more successful Java programmer. If you find

errors or have suggestions for improvement, please visit http://horstmann.com/

java8 and leave a comment. On that page, you will also find a link to an archive

file containing all code examples from the book.

Cay Horstmann

San Francisco, 2013

Prefacexiv

http://horstmann.com/java8
http://horstmann.com/java8

Cay S. Horstmann is the author of Scala for the Impatient (Addison-Wesley, 2012),

is principal author of Core Java™, Volumes I and II, Ninth Edition (Prentice Hall,

2013), and has written a dozen other books for professional programmers and

computer science students. He is a professor of computer science at San Jose State

University and is a Java Champion.

About the Author

xv

Topics in This Chapter

3.1 Deferred Execution — page 48

3.2 Parameters of Lambda Expressions — page 49

3.3 Choosing a Functional Interface — page 50

3.4 Returning Functions — page 53

3.5 Composition — page 54

3.6 Laziness — page 56

3.7 Parallelizing Operations — page 57

3.8 Dealing with Exceptions — page 58

3.9 Lambdas and Generics — page 61

3.10 Monadic Operations — page 63

Exercises — page 64

Programming with Lambdas

In the first two chapters, you saw the basic syntax and semantics of lambda ex-

pressions as well as the stream API that makes extensive use of them. In this

chapter, you will learn how to create your own libraries that make use of lambda

expressions and functional interfaces.

The key points of this chapter are:

• The main reason for using a lambda expression is to defer the execution of

the code until an appropriate time.

• When a lambda expression is executed, make sure to provide any required

data as inputs.

• Choose one of the existing functional interfaces if you can.

• It is often useful to write methods that return an instance of a functional

interface.

• When you work with transformations, consider how you can compose them.

• To compose transformations lazily, you need to keep a list of all pending

transformations and apply them in the end.

• If you need to apply a lambda many times, you often have a chance to split

up the work into subtasks that execute concurrently.

• Think what should happen when you work with a lambda expression that

throws an exception.

3Chapter

47

• When working with generic functional interfaces, use ? super wildcards for

argument types, ? extends wildcards for return types.

• When working with generic types that can be transformed by functions,

consider supplying map and flatMap.

3.1 Deferred Execution
The point of all lambdas is deferred execution. After all, if you wanted to execute

some code right now, you’d do that, without wrapping it inside a lambda. There

are many reasons for executing code later, such as

• Running the code in a separate thread

• Running the code multiple times

• Running the code at the right point in an algorithm (for example, the

comparison operation in sorting)

• Running the code when something happens (a button was clicked, data has

arrived, and so on)

• Running the code only when necessary

It is a good idea to think through what you want to achieve when you set out

programming with lambdas.

Let us look at a simple example. Suppose you log an event:

logger.info("x: " + x + ", y: " + y);

What happens if the log level is set to suppress INFO messages? The message string

is computed and passed to the info method, which then decides to throw it away.

Wouldn’t it be nicer if the string concatenation only happened when necessary?

Running code only when necessary is a use case for lambdas. The standard idiom

is to wrap the code in a no-arg lambda:

() -> "x: " + x + ", y: " + y

Now we need to write a method that

1. Accepts the lambda

2. Checks whether it should be called

3. Calls it when necessary

To accept the lambda, we need to pick (or, in rare cases, provide) a functional

interface. We discuss the process of choosing an interface in more detail in Sec-

tion 3.3, “Choosing a Functional Interface,” on page 50. Here, a good choice is a

Supplier<String>. The following method provides lazy logging:

Chapter 3 Programming with Lambdas48

public static void info(Logger logger, Supplier<String> message) {
 if (logger.isLoggable(Level.INFO))
 logger.info(message.get());
}

We use the isLoggable method of the Logger class to decide whether INFO messages

should be logged. If so, we invoke the lambda by calling its abstract method,

which happens to be called get.

NOTE: Deferring logging messages is such a good idea that the Java 8 library
designers beat me to it. The info method, as well as the other logging meth-
ods, now have variants that accept a Supplier<String>.You can directly call
logger.info(() -> "x: " + x + ", y:" + y). However, see Exercise 1 for a
potentially useful refinement.

3.2 Parameters of Lambda Expressions
When you ask your user to supply a comparator, it is pretty obvious that the

comparator has two arguments—the values to be compared.

Arrays.sort(names,
 (s, t) -> Integer.compare(s.length(), t.length())); // Compare strings s and t

Now consider a different example. This method repeats an action multiple times:

public static void repeat(int n, IntConsumer action) {
 for (int i = 0; i < n; i++) action.accept(i);
}

Why an IntConsumer and not a Runnable? We tell the action in which iteration it oc-

curs, which might be useful information. The action needs to capture that input

in a parameter

repeat(10, i -> System.out.println("Countdown: " + (9 - i)));

Another example is an event handler

button.setOnAction(event -> action);

The event object carries information that the action may need.

In general, you want to design your algorithm so that it passes any required in-

formation as arguments. For example, when editing an image, it makes sense to

have the user supply a function that computes the color for a pixel. Such a func-

tion might need to know not just the current color, but also where the pixel is

in the image, or what the neighboring pixels are.

493.2 Parameters of Lambda Expressions

However, if these arguments are rarely needed, consider supplying a second

version that doesn’t force users into accepting unwanted arguments:

public static void repeat(int n, Runnable action) {
 for (int i = 0; i < n; i++) action.run();
}

This version can be called as

repeat(10, () -> System.out.println("Hello, World!"));

3.3 Choosing a Functional Interface
In most functional programming languages, function types are structural. To

specify a function that maps two strings to an integer, you use a type that

looks something like Function2<String, String, Integer> or (String, String) -> int. In
Java, you instead declare the intent of the function, using a functional interface

such as Comparator<String>. In the theory of programming languages this is called

nominal typing.

Of course, there are many situations where you want to accept “any function”

without particular semantics. There are a number of generic function types for

that purpose (see Table 3–1), and it’s a very good idea to use one of them when

you can.

For example, suppose you write a method to process files that match a certain

criterion. Should you use the descriptive java.io.FileFilter class or a Predicate<File>?
I strongly recommend that you use the standard Predicate<File>. The only reason

not to do so would be if you already have many useful methods producing

FileFilter instances.

NOTE: Most of the standard functional interfaces have nonabstract methods
for producing or combining functions. For example, Predicate.isEqual(a) is the
same as a::equals, provided a is not null. And there are default methods and,
or, negate for combining predicates. For example, Predicate.isEqual(a).
or(Predicate.isEqual(b)) is the same as x -> a.equals(x) || b.equals(x).

Consider another example. We want to transform images, applying a Color ->
Color function to each pixel. For example, the brightened image in Figure 3–1 is

obtained by calling

Image brightenedImage = transform(image, Color::brighter);

Chapter 3 Programming with Lambdas50

Table 3–1 Common Functional Interfaces

Other
Methods

DescriptionAbstract
Method
Name

Return
Type

Parameter
Types

Functional Interface

Runs an action

without

arguments or

return value

runvoidnoneRunnable

Supplies a

value of type T
getTnoneSupplier<T>

chainConsumes a

value of type T
acceptvoidTConsumer<T>

chainConsumes

values of types

T and U

acceptvoidT, UBiConsumer<T, U>

compose,

andThen,

identity

A function with

argument of

type T

applyRTFunction<T, R>

andThenA function with

arguments of

types T and U

applyRT, UBiFunction<T, U,
R>

compose,

andThen,

identity

A unary

operator on the

type T

applyTTUnaryOperator<T>

andThenA binary

operator on the

type T

applyTT, TBinaryOperator<T>

and, or,

negate,

isEqual

A

Boolean-valued

function

testbooleanTPredicate<T>

and, or,

negate
A

Boolean-valued

function with

two arguments

testbooleanT, UBiPredicate<T,
U>

513.3 Choosing a Functional Interface

Figure 3–1 The original and transformed image

There is a standard functional interface for this purpose: UnaryOperator<Color>. That

is a good choice, and there is no need to come up with a ColorTransformer interface.

Here is the implementation of the transform method. Note the call to the apply
method.

public static Image transform(Image in, UnaryOperator<Color> f) {
 int width = (int) in.getWidth();
 int height = (int) in.getHeight();
 WritableImage out = new WritableImage(width, height);
 for (int x = 0; x < width; x++)
 for (int y = 0; y < height; y++)
 out.getPixelWriter().setColor(x, y,
 f.apply(in.getPixelReader().getColor(x, y)));
 return out;
}

NOTE: This method uses the Color and Image classes from JavaFX, not from
java.awt. See Chapter 4 for more information on JavaFX.

Table 3–2 lists the 34 available specializations for primitive types int, long, and

double. Use the specializations when you can to reduce autoboxing.

Sometimes, you need to supply your own functional interface because there is

nothing in the standard library that works for you. Suppose you want to modify

colors in an image, allowing users to specify a function (int, int, Color) -> Color
that computes a new color depending on the (x, y) location in the image. In that

case, you can define your own interface:

Chapter 3 Programming with Lambdas52

Table 3–2 Functional Interfaces for Primitive Types
p, q is int, long, double;
P, Q is Int, Long, Double

Abstract Method NameReturn TypeParameter TypesFunctional Interface

getAsBooleanbooleannoneBooleanSupplier

getAsPpnonePSupplier

acceptvoidpPConsumer

acceptvoidT, pObjPConsumer<T>

applyTpPFunction<T>

applyAsQqpPToQFunction

applyAsPpTToPFunction<T>

applyAsPpT, UToPBiFunction<T, U>

applyAsPppPUnaryOperator

applyAsPpp, pPBinaryOperator

testbooleanpPPredicate

@FunctionalInterface
public interface ColorTransformer {
 Color apply(int x, int y, Color colorAtXY);
}

NOTE: I called the abstract method apply because that is used for the majority
of standard functional interfaces. Should you call the method process or
transform or getColor instead? It doesn’t matter much to users of the color
manipulation code—they will usually supply a lambda expression. Sticking
with the standard name simplifies the life of the implementor.

3.4 Returning Functions
In a functional programming language, functions are first-class citizens. Just like

you can pass numbers to methods and have methods that produce numbers, you

can have arguments and return values that are functions. This sounds abstract,

but it is very useful in practice. Java is not quite a functional language because

it uses functional interfaces, but the principle is the same. You have seen many

533.4 Returning Functions

methods that accept functional interfaces. In this section, we consider methods

whose return type is a functional interface.

Consider again image transformations. If you call

Image brightenedImage = transform(image, Color::brighter);

the image is brightened by a fixed amount. What if you want it even brighter, or

not quite so bright? Could you supply the desired brightness as an additional

parameter to transform?

Image brightenedImage = transform(image,
 (c, factor) -> c.deriveColor(0, 1, factor, 1), // Brighten c by factor
 1.2); // Use a factor of 1.2

One would have to overload transform:

public static <T> Image transform(Image in, BiFunction<Color, T> f, T arg)

That can be made to work (see Exercise 6), but what if one wants to supply two

arguments? Or three? There is another way. We can make a method that returns

the appropriate UnaryOperator<Color>, with the brightness set:

public static UnaryOperator<Color> brighten(double factor) {
 return c -> c.deriveColor(0, 1, factor, 1);
}

Then we can call

Image brightenedImage = transform(image, brighten(1.2));

The brighten method returns a function (or, technically, an instance of a functional

interface). That function can be passed to another method (here, transform) that

expects such an interface.

In general, don’t be shy to write methods that produce functions. This is useful

to customize the functions that you pass to methods with functional interfaces.

For example, consider the Arrays.sort method with a Comparator argument. There

are many ways of comparing values, and you can write a method that yields a

comparator for your needs—see Exercise 7. Then you can call Arrays.sort(values,
comparatorGenerator(customization arguments)).

NOTE: As you will see in Chapter 8, the Comparator class has several methods
that yield or modify comparators.

3.5 Composition
A single-argument function transforms one value into another. If you have two

such transformations, then doing one after the other is also a transformation.

Chapter 3 Programming with Lambdas54

Figure 3–2 First, the image is brightened, and then grayscale is applied.

Consider image manipulation: Let’s first brighten an image, then turn it to

grayscale (see Figure 3–2).

NOTE: In the printed book, everything is in grayscale. Just run the program
in the companion code to see the effect.

That is easy to do with our transform method:

Image image = new Image("eiffel-tower.jpg");
Image image2 = transform(image, Color::brighter);
Image finalImage = transform(image2, Color::grayscale);

But this is not very efficient. We need to make an intermediate image. For large

images, that requires a considerable amount of storage. If we could compose the

image operations and then apply the composite operation to each pixel, that

would be better.

In this case, the image operations are instances of UnaryOperator<Color>. That type

has a method compose that, for rather depressing reasons that are explored in

Exercise 10, is not useful for us. But it is easy to roll our own:

553.5 Composition

public static <T> UnaryOperator<T> compose(UnaryOperator<T> op1,
 UnaryOperator<T> op2) {
 return t -> op2.apply(op1.apply(t));
}

Now we can call

Image finalImage = transform(image, compose(Color::brighter, Color::grayscale));

That is much better. Now the composed transformation is directly applied to

each pixel, and there is no need for an intermediate image.

Generally, when you build a library where users can carry out one effect after

another, it is a good idea to give library users the ability to compose these effects.

See Exercise 11 for another example.

3.6 Laziness
In the preceding section, you saw how users of an image transformation method

can precompose operations to avoid intermediate images. But why should they

have to do that? Another approach is for the library to accumulate all operations

and then fuse them. This is, of course, what the stream library does.

If you do lazy processing, your API needs to distinguish between intermediate

operations, which accumulate the tasks to be done, and terminal operations which

deliver the result. In the image processing example, we can make transform lazy,

but then it needs to return another object that is not an Image. For example,

LatentImage latent = transform(image, Color::brighter);

A LatentImage can simply store the original image and a sequence of image

operations.

public class LatentImage {
 private Image in;
 private List<UnaryOperator<Color>> pendingOperations;
 ...
}

This class also needs a transform method:

LatentImage transform(UnaryOperator<Color> f) {
 pendingOperations.add(f);
 return this;
}

To avoid duplicate transform methods, you can follow the approach of the stream

library where an initial stream() operation is required to turn a collection into a

Chapter 3 Programming with Lambdas56

stream. Since we can’t add a method to the Image class, we can provide a LatentImage
constructor or a static factory method.

LatentImage latent = LatentImage.from(image)
 .transform(Color::brighter).transform(Color::grayscale);

You can only be lazy for so long. Eventually, the work needs to be done. We can

provide a toImage method that applies all operations and returns the result:

Image finalImage = LatentImage.from(image)
 .transform(Color::brighter).transform(Color::grayscale)
 .toImage();

Here is the implementation of the method:

public Image toImage() {
 int width = (int) in.getWidth();
 int height = (int) in.getHeight();
 WritableImage out = new WritableImage(width, height);
 for (int x = 0; x < width; x++)
 for (int y = 0; y < height; y++) {
 Color c = in.getPixelReader().getColor(x, y);
 for (UnaryOperator<Color> f : pendingOperations) c = f.apply(c);
 out.getPixelWriter().setColor(x, y, c);
 }
 return out;
}

CAUTION: In real life, implementing lazy operations is quite a bit harder.
Usually you have a mixture of operations, and not all of them can be applied
lazily. See Exercises 12 and 13.

3.7 Parallelizing Operations
When expressing operations as functional interfaces, the caller gives up control

over the processing details. As long as the operations are applied so that the

correct result is achieved, the caller has nothing to complain about. In particular,

the library can make use of concurrency. For example, in image processing we

can split the image into multiple strips and process each strip separately.

Here is a simple way of carrying out an image transformation in parallel. This

code operates on Color[][] arrays instead of Image objects because the JavaFX

PixelWriter is not threadsafe.

573.7 Parallelizing Operations

public static Color[][] parallelTransform(Color[][] in, UnaryOperator<Color> f) {
 int n = Runtime.getRuntime().availableProcessors();
 int height = in.length;
 int width = in[0].length;
 Color[][] out = new Color[height][width];
 try {
 ExecutorService pool = Executors.newCachedThreadPool();
 for (int i = 0; i < n; i++) {
 int fromY = i * height / n;
 int toY = (i + 1) * height / n;
 pool.submit(() -> {
 for (int x = 0; x < width; x++)
 for (int y = fromY; y < toY; y++)
 out[y][x] = f.apply(in[y][x]);
 });
 }
 pool.shutdown();
 pool.awaitTermination(1, TimeUnit.HOURS);
 }
 catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 return out;
}

This is, of course, just a proof of concept. Supporting image operations that

combine multiple pixels would be a major challenge.

In general, when you are given an object of a functional interface and you need

to invoke it many times, ask yourself whether you can take advantage of

concurrency.

3.8 Dealing with Exceptions
When you write a method that accepts lambdas, you need to spend some thought

on handling and reporting exceptions that may occur when the lambda

expression is executed.

When an exception is thrown in a lambda expression, it is propagated to the

caller. There is nothing special about executing lambda expressions, of course.

They are simply method calls on some object that implements a functional

interface. Often it is appropriate to let the expression bubble up to the caller.

Chapter 3 Programming with Lambdas58

Consider, for example:

public static void doInOrder(Runnable first, Runnable second) {
 first.run();
 second.run();
}

If first.run() throws an exception, then the doInOrder method is terminated, second
is never run, and the caller gets to deal with the exception.

But now suppose we execute the tasks asynchronously.

public static void doInOrderAsync(Runnable first, Runnable second) {
 Thread t = new Thread() {
 public void run() {
 first.run();
 second.run();
 }
 };
 t.start();
}

If first.run() throws an exception, the thread is terminated, and second is never

run. However, the doInOrderAsync returns right away and does the work in a sep-

arate thread, so it is not possible to have the method rethrow the exception. In

this situation, it is a good idea to supply a handler:

public static void doInOrderAsync(Runnable first, Runnable second,
 Consumer<Throwable> handler) {
 Thread t = new Thread() {
 public void run() {
 try {
 first.run();
 second.run();
 } catch (Throwable t) {
 handler.accept(t);
 }
 }
 };
 t.start();
}

Now suppose that first produces a result that is consumed by second. We can still

use the handler.

593.8 Dealing with Exceptions

public static <T> void doInOrderAsync(Supplier<T> first, Consumer<T> second,
 Consumer<Throwable> handler) {
 Thread t = new Thread() {
 public void run() {
 try {
 T result = first.get();
 second.accept(result);
 } catch (Throwable t) {
 handler.accept(t);
 }
 }
 };
 t.start();
}

Alternatively, we could make second a BiConsumer<T, Throwable> and have it deal with

the exception from first—see Exercise 16.

It is often inconvenient that methods in functional interfaces don’t allow checked

exceptions. Of course, your methods can accept functional interfaces whose

methods allow checked exceptions, such as Callable<T> instead of Supplier<T>. A
Callable<T> has a method that is declared as T call() throws Exception. If you want

an equivalent for a Consumer or a Function, you have to create it yourself.

You sometimes see suggestions to “fix” this problem with a generic wrapper,

like this:

public static <T> Supplier<T> unchecked(Callable<T> f) {
 return () -> {
 try {
 return f.call();
 }
 catch (Exception e) {
 throw new RuntimeException(e);
 }
 catch (Throwable t) {
 throw t;
 }
 };
}

Then you can pass a

unchecked(() -> new String(Files.readAllBytes(
 Paths.get("/etc/passwd")), StandardCharsets.UTF_8))

to a Supplier<String>, even though the readAllBytes method throws an IOException.

Chapter 3 Programming with Lambdas60

That is a solution, but not a complete fix. For example, this method cannot gen-

erate a Consumer<T> or a Function<T, U>. You would need to implement a variation of

unchecked for each functional interface.

3.9 Lambdas and Generics
Generally, lambdas work well with generic types. You have seen a number of

examples where we wrote generic mechanisms, such as the unchecked method

of the preceding section. There are just a couple of issues to keep in mind.

One of the unhappy consequences of type erasure is that you cannot construct

a generic array at runtime. For example, the toArray() method of Collection<T> and

Stream<T> cannot call T[] result = new T[n]. Therefore, these methods return Object[]
arrays. In the past, the solution was to provide a second method that accepts

an array. That array was either filled or used to create a new one via reflection.

For example, Collection<T> has a method toArray(T[] a). With lambdas, you have a

new option, namely to pass the constructor. That is what you do with streams:

String[] result = words.toArray(String[]::new);

When you implement such a method, the constructor expression is an

IntFunction<T[]>, since the size of the array is passed to the constructor. In your

code, you call T[] result = constr.apply(n).

In this regard, lambdas help you overcome a limitation of generic types. Unfor-

tunately, in another common situtation lambdas suffer from a different limitation.

To understand the problem, recall the concept of type variance.

Suppose Employee is a subtype of Person. Is a List<Employee> a special case of a

List<Person>? It seems that it should be. But actually, it would be unsound.

Consider this code:

List<Employee> staff = ...;
List<Person> tenants = staff; // Not legal, but suppose it was

tenants.add(new Person("John Q. Public")); // Adds Person to staff!

Note that staff and tenants are references to the same list. To make this type error

impossible, we must disallow the conversion from List<Employee> to List<Person>.
We say that the type parameter T of List<T> is invariant.

If List was immutable, as it is in a functional programming language, then the

problem would disappear, and one could have a covariant list. That is what is

done in languages such as Scala. However, when generics were invented, Java

had very few immutable generic classes, and the language designers instead

embraced a different concept: use-site variance, or “wildcards.”

A method can decide to accept a List<? extends Person> if it only reads from the list.

Then you can pass either a List<Person> or a List<Employee>. Or it can accept a

613.9 Lambdas and Generics

List<? super Employee> if it only writes to the list. It is okay to write employees into

a List<Person>, so you can pass such a list. In general, reading is covariant (subtypes

are okay) and writing is contravariant (supertypes are okay). Use-site variance

is just right for mutable data structures. It gives each service the choice which

variance, if any, is appropriate.

However, for function types, use-site variance is a hassle. A function type is al-
ways contravariant in its arguments and covariant in its return value. For example,

if you have a Function<Person, Employee>, you can safely pass it on to someone who

needs a Function<Employee, Person>. They will only call it with employees, whereas

your function can handle any person. They will expect the function to return a

person, and you give them something even better.

In Java, when you declare a generic functional interface, you can’t specify that

function arguments are always contravariant and return types always covariant.

Instead, you have to repeat it for each use. For example, look at the javadoc for

Stream<T>:

void forEach(Consumer<? super T> action)
Stream<T> filter(Predicate<? super T> predicate)
<R> Stream<R> map(Function<? super T, ? extends R> mapper)

The general rule is that you use super for argument types, extends for return

types. That way, you can pass a Consumer<Object> to forEach on a Stream<String>. If it
is willing to consume any object, surely it can consume strings.

But the wildcards are not always there. Look at

T reduce(T identity, BinaryOperator<T> accumulator)

Since T is the argument and return type of BinaryOperator, the type does not vary.

In effect, the contravariance and covariance cancel each other out.

As the implementor of a method that accepts lambda expressions with generic

types, you simply add ? super to any argument type that is not also a return type,

and ? extends to any return type that is not also an argument type.

For example, consider the doInOrderAsync method of the preceding section.

Instead of

public static <T> void doInOrderAsync(Supplier<T> first,
 Consumer<T> second, Consumer<Throwable> handler)

it should be

public static <T> void doInOrderAsync(Supplier<? extends T> first,
 Consumer<? super T> second, Consumer<? super Throwable> handler)

Chapter 3 Programming with Lambdas62

3.10 Monadic Operations
When you work with generic types, and with functions that yield values

from these types, it is useful to supply methods that let you compose these

functions—that is, carry out one after another. In this section, you will see a

design pattern for providing such compositions.

Consider a generic type G<T> with one type parameter, such as List<T> (zero or

more values of type T), Optional<T> (zero or one values of type T), or Future<T> (a
value of type T that will be available in the future).

Also consider a function T -> U, or a Function<T, U> object.

It often makes sense to apply this function to a G<T> (that is, a List<T>, Optional<T>,
Future<T>, and so on). How this works exactly depends on the nature of the

generic type G. For example, applying a function f to a List with elements e1, . . . , en

means creating a list with elements f(e1), . . . , f(en).

Applying f to an Optional<T> containing v means creating an Optional<U> contain-

ing f(v). But if f is applied to an empty Optional<T> without a value, the result is an

empty Optional<U>.

Applying f to a Future<T> simply means to apply it whenever it is available. The

result is a Future<U>.

By tradition, this operation is usually called map. There is a map method for Stream
and Optional. The CompletableFuture class that we will discuss in Chapter 6 has an

operation that does just what map should do, but it is called thenApply. There is no

map for a plain Future<V>, but it is not hard to supply one (see Exercise 21).

So far, that is a fairly straightforward idea. It gets more complex when you look

at functions T -> G<U> instead of functions T -> U. For example, consider getting

the web page for a URL. Since it takes some time to fetch the page, that is a

function URL -> Future<String>. Now suppose you have a Future<URL>, a URL that will

arrive sometime. Clearly it makes sense to map the function to that Future. Wait

for the URL to arrive, then feed it to the function and wait for the string to arrive.

This operation has traditionally been called flatMap.

The name flatMap comes from sets. Suppose you have a “many-valued”

function—a function computing a set of possible answers. And then you have

another such function. How can you compose these functions? If f(x) is the set

{y1, . . . , yn}, you apply g to each element, yielding {g(y1), . . . , g(yn)}. But each of

the g(yi) is a set. You want to “flatten” the set of sets so that you get the set of all

possible values of both functions.

633.10 Monadic Operations

There is a flatMap for Optional<T> as well. Given a function T -> Optional<U>, flatMap
unwraps the value in the Optional and applies the function, except if either the

source or target option was not present. It does exactly what the set-based flatMap
would have done on sets with size 0 or 1.

Generally, when you design a type G<T> and a function T -> U, think whether it

makes sense to define a map that yields a G<U>. Then, generalize to functions T ->
G<U> and, if appropriate, provide flatMap.

NOTE: These operations are important in the theory of monads, but you don’t
need to know the theory to understand map and flatMap. The concept of map-
ping a function is both straightforward and useful, and the point of this section
is to make you aware of it.

Exercises
1. Enhance the lazy logging technique by providing conditional logging. A

typical call would be logIf(Level.FINEST, () -> i == 10, () -> "a[10] = " + a[10]).
Don’t evaluate the condition if the logger won’t log the message.

2. When you use a ReentrantLock, you are required to lock and unlock with the

idiom

myLock.lock();
try {

some action
} finally {
 myLock.unlock();
}

Provide a method withLock so that one can call

withLock(myLock, () -> { some action })

3. Java 1.4 added assertions to the language, with an assert keyword. Why were

assertions not supplied as a library feature? Could they be implemented as

a library feature in Java 8?

4. How many functional interfaces with Filter in their name can you find in the

Java API? Which ones add value over Predicate<T>?

5. Here is a concrete example of a ColorTransformer. We want to put a frame around

an image, like this:

Chapter 3 Programming with Lambdas64

First, implement a variant of the transform method of Section 3.3, “Choosing

a Functional Interface,” on page 50, with a ColorTransformer instead of an

UnaryOperator<Color>. Then call it with an appropriate lambda expression to put

a 10 pixel gray frame replacing the pixels on the border of an image.

6. Complete the method

public static <T> Image transform(Image in, BiFunction<Color, T> f, T arg)

from Section 3.4, “Returning Functions,” on page 53.

7. Write a method that generates a Comparator<String> that can be normal or re-

versed, case-sensitive or case-insensitive, space-sensitive or space-insensitive,

or any combination thereof. Your method should return a lambda expression.

8. Generalize Exercise 5 by writing a static method that yields a ColorTransformer
that adds a frame of arbitrary thickness and color to an image.

9. Write a method lexicographicComparator(String... fieldNames) that yields a com-

parator that compares the given fields in the given order. For example, a

lexicographicComparator("lastname", "firstname") takes two objects and, using

reflection, gets the values of the lastname field. If they are different, return the

difference, otherwise move on to the firstname field. If all fields match, return 0.

10. Why can’t one call

UnaryOperator op = Color::brighter;
Image finalImage = transform(image, op.compose(Color::grayscale));

Look carefully at the return type of the compose method of UnaryOperator<T>.
Why is it not appropriate for the transform method? What does that say about

65Exercises

the utility of structural and nominal types when it comes to function

composition?

11. Implement static methods that can compose two ColorTransformer objects, and

a static method that turns a UnaryOperator<Color> into a ColorTransformer that ig-

nores the x- and y-coordinates. Then use these methods to add a gray frame

to a brightened image. (See Exercise 5 for the gray frame.)

12. Enhance the LatentImage class in Section 3.6, “Laziness,” on page 56, so that it

supports both UnaryOperator<Color> and ColorTransformer. Hint: Adapt the former

to the latter.

13. Convolution filters such as blur or edge detection compute a pixel from

neighboring pixels. To blur an image, replace each color value by the average

of itself and its eight neighbors. For edge detection, replace each color value

c with 4c – n – e – s – w, where the other colors are those of the pixel to the

north, east, south, and west. Note that these cannot be implemented lazily,

using the approach of Section 3.6, “Laziness,” on page 56, since they require

the image from the previous stage (or at least the neighboring pixels) to have

been computed. Enhance the lazy image processing to deal with these opera-

tions. Force computation of the previous stage when one of these operators

is evaluated.

14. To deal with lazy evaluation on a per-pixel basis, change the transformers so

that they are passed a PixelReader object from which they can read other pixels

in the image. For example, (x, y, reader) -> reader.get(width - x, y) is a mirror-

ing operation. The convolution filters from the preceding exercises can be

easily implemented in terms of such a reader. The straightforward operations

would simply have the form (x, y, reader) -> reader.get(x, y).grayscale(), and

you can provide an adapter from UnaryOperation<Color>. A PixelReader is at a

particular level in the pipeline of operations. Keep a cache of recently read

pixels at each level in the pipeline. If a reader is asked for a pixel, it looks in

the cache (or in the original image at level 0); if that fails, it constructs a

reader that asks the previous transform.

15. Combine the lazy evaluation of Section 3.6, “Laziness,” on page 56, with the

parallel evaluation of Section 3.7, “Parallelizing Operations,” on page 57.

16. Implement the doInOrderAsync of Section 3.8, “Dealing with Exceptions,” on

page 58, where the second parameter is a BiConsumer<T, Throwable>. Provide

a plausible use case. Do you still need the third parameter?

17. Implement a doInParallelAsync(Runnable first, Runnable second, Consumer<Throwable>)
method that executes first and second in parallel, calling the handler if

either method throws an exception.

Chapter 3 Programming with Lambdas66

18. Implement a version of the unchecked method in Section 3.8, “Dealing with

Exceptions,” on page 58, that generates a Function<T, U> from a lambda that

throws checked exceptions. Note that you will need to find or provide a

functional interface whose abstract method throws arbitrary exceptions.

19. Look at the Stream<T> method <U> U reduce(U identity, BiFunction<U,? super T,U>
accumulator, BinaryOperator<U> combiner). Should U be declared as ? super U in the

first type argument to BiFunction? Why or why not?

20. Supply a static method <T, U> List<U> map(List<T>, Function<T, U>).

21. Supply a static method <T, U> Future<U> map(Future<T>, Function<T, U>). Return an

object of an anonymous class that implements all methods of the Future
interface. In the get methods, invoke the function.

22. Is there a flatMap operation for CompletableFuture? If so, what is it?

23. Define a map operation for a class Pair<T> that represents a pair of objects of

type T.

24. Can you define a flatMap method for Pair<T>? If so, what is it? If not, why not?

67Exercises

This page intentionally left blank

Symbols
- operator, for numbers, 159

--, in shell scripts, 151

->, in lambda expressions, 4–6

; (semicolon), in JavaScript, 141

:: operator, in method references, 8

/ (slash), in Unix paths, 184

`...` (back quotes), in shell scripts, 149

^ (caret), for denoting free variables, 4

'...' and "..." (single and double quotes)

in JavaScript, 138

in shell scripts, 150

[...] (square brackets), in JavaScript, 141,

144–145

{...} (curly braces), in lambdas, 5

$ (dollar sign), in JavaScript, 142

${...}, in shell scripts, 150

* (asterisk), in locales, 173

\ (backslash), in Windows paths, 184

#!, in shell scripts, 151

+ operator, for numbers, 159

< operator, in JavaScript, 143

A
abstract methods, in functional

interfaces, 6

acceptEither method (CompletableFuture),

134

accumulate method (LongAccumulator), 122

accumulateAndGet method (AtomicXXX), 121

actions, repeating, 49

add method

of Bindings, 78

of LongAdder, 121

addExact method (Math), 159

addListener method (JavaFX), 72, 153

addSuppressed method (Throwable), 182

allOf method (CompletableFuture), 134

AnchorPane class (JavaFX), 84

and method

of Bindings, 78–79

of Predicate, 50

Android, 80

AnnotatedElement interface, getAnnotation,

getAnnotationsByType methods, 168

Index

199

annotations, 167–171

container, 167

in lambdas, 5

no annotations for, 170

repeated, 167–169

type use, 169–170

anyMatch method (Stream), 28

anyOf method (CompletableFuture), 134

Apollo 11, launch of, 104, 109

applets, 190–192

Application class

init method, 153

start method, 71

stop method, 153

applyToEither method (CompletableFuture), 134

$ARG, in shell scripts, 151

ArithmeticException, 159

arrays

and generic types, 10, 61

computing values of, 129

from stream elements, 33

in Nashorn, 144–145

sorting, 128

type use annotations in, 170

Arrays class

parallelXXX methods, 128–129

sort method, 3, 6

stream method, 39

ASCII characters, printable, 166

Ask.com toolbar, 192

asPredicate method (Pattern), 172

asynchronous applications, 131

atomic values, 120–123

and performance, 121

in concurrent hash maps, 124–126

AtomicXXX classes

accumulateAndGet method, 121

compareAndSet method, 120

getAndXXX methods, 121

incrementAndGet method, 120

updateAndGet method, 121

Atwood’s law, 153

atZone method (LocalDateTime), 109

autoboxing, reducing, 52

AutoCloseable interface, 25, 163, 180–181, 195

average method (XXXStream), 40

AWT (Abstract Window Toolkit), 70

B
Base64, BASE64Encoder classes, 166

BeanInfo class, 73

between method (Duration), 103

BiConsumer interface, 43, 51

BiFunction interface, 7, 43, 51

BigInteger class, 159

constructor for, 193

BinaryOperator interface, 43, 51

bind, bindBidirectional methods (XXXProperty),

76

Binding interface, 78

bindings, 75–80

lambdas for, 79

with JavaScript, 140

Bindings class, methods of, 78–79

BiPredicate interface, 51

BitSet class, 195

constructor for, 195

stream method, 161, 196

toXXXArray methods, 196

valueOf method, 196

books, counting words in, 22

Boolean class, logicalXXX methods of, 158

BooleanProperty class, 74

BooleanSupplier interface, 53

BorderLayout control (Swing), 81

BorderPane class (JavaFX), 80–81, 84

boxed method (XXXStream), 40

BufferedReader class, lines method, 164

BufferedXXX classes, 186

buttons

disabling, at the ends of a gauge, 77

event handling for, 3, 8

Byte class

compare method, 190

decode method, 193

parseByte method, 193

toUnsignedXXX methods, 158

valueOf method, 193

BYTE static field, 158

byteValueExact method (BigInteger), 159

Index200

C
C++ programming language

default methods in, 15

unsigned types in, 159

Calendar class, 101

Callable interface

call method, 8

checked exceptions in, 60

casts, type use annotations in, 170

catch statement, 181

multiple exceptions in, 182–183

certificates, signing, 190

ChangeListener interface, 75, 77, 153

charAt method (String), 25

CharSequence interface

chars, codePoints methods, 39, 158

splitting by regular expressions, 24, 172

checked exceptions, 8

checkedNavigableXXX methods (Collections),

162

checkedQueue method (Collections), 162

Checker Framework, 169–170

Church, Alonzo, 4, 104

“class wins” rule, 16

ClassCastException, 162

classes

and classloader, 195

companion, 16

extending, in JavaScript, 146–148

classifier functions, 36

clone method (Object), 6

close method (AutoCloseable), 163, 180–181

Closeable interface, 180

closures, 11

code units, 39, 158

codePoints method (CharSequence), 39, 158

collect method (Stream), 33–34

Collection interface, 160–163

parallelStream method, 23, 40

removeI methods, 160–161

stream method, 22–24

toArray method, 61

collections, 160–163

and lambda expressions, 160

processing, 22–23

sorting, 27

threadsafe, 119

vs. streams, 22

Collections class, 17, 162–163

checkedQueue method, 162

emptySortedXXX methods, 163

sort method, 27

xxxNavigableXXX methods, 162

collections library

adding forEach method to, 14

and function expressions, 1

Collector interface, 33

Collectors class, 33

counting method, 37

groupingBy method, 36–39

groupingByConcurrent method, 41

joining method, 34

mapping method, 38

maxBy, minBy methods, 37

partitioningBy method, 36–37, 39

reducing method, 38

summarizingXXX methods, 34

summingXXX methods, 37

toCollection method, 33

toConcurrentMap method, 36

toMap method, 34–36

toSet method, 33, 37

collectors, downstream, 37–39

com global object (JavaScript), 141

Comparator interface, 2, 161–162

and lambdas, 6

compare method, 17

comparing method, 17, 161–162

naturalOrder method, 162

nullXXX methods, 162

reverseOrder, reversed methods, 162

thenComparing method, 161–162

comparators, 49

chaining, 161

comparing integers in, 189–190

customizing, 54

compare method (integer types), 3–6,

189–190

compareAndSet method (AtomicXXX), 120

compareUnsigned method (Integer, Long), 159

201Index

CompletableFuture class, 130–131

acceptEither, applyToEither methods, 134

allOf, anyOf methods, 134

exceptions in, 133

handle method, 133

runAfterXXX methods, 134

runAsync method, 131

supplyAsync method, 131–132

thenAccept method, 132–133

thenAcceptBoth method, 134

thenApply method, 63, 130–133

thenApplyAsync method, 131–133

thenCombine method, 134

thenCompose method, 132–133

thenRun method, 133

whenComplete method, 133

CompletionStage interface, 134

compose method (UnaryOperator), 55–56

composition pipeline, 131–132

compute, computeIfXXX methods (Map), 161

concat method

of Bindings, 79

of Stream, 26

concurrent programming, 1, 119–135

ConcurrentHashMap class, 123–128

atomic updates in, 124–126

compute, computeIfXXX methods, 125–126

forEach, forEachXXX methods, 126–128

get method, 124

mappingCount method, 123

merge method, 125–126

newKeySet, keySet methods, 128

organizing buckets as trees in, 124

put method, 124

putIfAbsent method, 125

reduce, reduceXXX methods, 126–128

replace method, 124

search, searchXXX methods, 126–128

config method (Logger), 171

constructor references, 9–10

for arrays, 10

type use annotations in, 170

Consumer interface, 43, 51

convert method (Bindings), 79

copy method (Files), 186–187

count method (Stream), 22–23, 28

counting method (Collectors), 37

createBindings method (ScriptEngine), 140

createXXX methods (Files), 186–187

createXXXBindings methods (Bindings), 79

CSS (Cascading Style Sheets), 80

using with JavaFX, 90–91

D
Date class, 115, 174

Date and Time API, 101–117

and legacy code, 115–116

dates

computing, 107–108

difference between, 104–106

formatting, 112–115

local, 104–106

local preferences for, 172

parsing, 115

DateTimeFormatter class, 112–115

and legacy classes, 116

format method, 112

ofLocalizedXXX methods, 112

ofPattern method, 114

parse method, 115

toFormat method, 114

withLocale method, 112

DayOfWeek class, 106

dayOfWeekInMonth method (TemporalAdjusters),

107

deadlocks, 119

in loggers, 193

debugging

layouts, 84, 91

streams, 27

with checked wrappers, 162

decrementExact method (Math), 159

default methods, 14–16

adding to interfaces, 16

resolving ambiguities in, 15

deferred execution, 2–4, 48–49

delete, deleteIfExists methods (Files), 187

deployment rulesets, 193

directories

checking existense of, 187

creating, 186

deleting, 188

Index202

paths for, 184

streams of, 165

temporary, 187

working, changing, 194

DirectoryStream interface, 165

disableProperty method (JavaFX), 77

distinct method (Stream), 27, 41, 160

divide method (Bindings), 76, 78

dividedBy method (Instant, Duration), 103

divideUnsigned method (Integer, Long), 159

Double class

compare method, 190

decode method, 193

isXXX methods, 159

parseDouble method, 193

sum, max, min methods, 158

valueOf method, 193

DoubleAccumulator, DoubleAdder classes, 122

DoubleProperty class, 74–75

doubles method (Random), 40

DoubleStream class, 39–40

boxed method, 40

mapToDouble method, 39

range, rangeClosed methods, 39

sum, average, max, min methods, 40

summaryStatistics method, 40

toArray method, 40

DoubleSummaryStatistics class, 34, 40

DoubleXXX interfaces, 43, 53

downstream collectors, 37–39

DropShadow class (JavaFX), 93

Duration class

arithmetic operations, 103

between method, 103

immutable, 104

toXXX methods, 103

dynamically typed languages, 143

E
ECMAScript standard, 137, 146

edu global object (JavaScript), 141

Emacs text editor, running jjs inside, 139

emails, binary data in, 166

empty method (Optional), 30

emptyNavigableXXX methods (Collections), 162

emptySortedXXX methods (Collections), 163

<<END, in shell scripts, 150

$ENV, in shell scripts, 151

environment variables, 151

epoch, definition of, 102

equal, equalIgnoreCase methods (Bindings), 78

equals method (Object), 16, 188

$ERR, in shell scripts, 149

Error, Exception classes, disabling

suppressed exceptions in, 182

eval method (ScriptEngine), 140

event handlers

deferred execution in, 3

for asynchronous actions, 131

passing methods to, 8

event-driven programming, 1

exception specifications, type use

annotations in, 170

exceptions, 58–61

catching multiple, 182–183

checked, 7–8

in functional interfaces, 60–61

in reflective methods, 183

suppressed, 181–182

exec method (Runtime), 194

executeLargeUpdate method (Statement), 174

ExecutionException, 133

exists method (Files), 187

exit function (shell scripts), 152

$EXIT, in shell scripts, 149

expression closure, 146

extends keyword, for function types, 62

F
FadeTransition class (JavaFX), 92

fat clients, 70

File class, toPath method, 185

FileReader class, 163

files

checking existense of, 187

closing, 163

copying/moving/deleting, 187

creating, 184, 186

processing, 50

reading, 185

all words of, 181

lazily, 163–164

203Index

files (continued)
redirecting standard I/O streams to,

194

saving streams into, 186

specifying encoding for, 163

temporary, 187

working with, 183–188

writing, 185

Files class, 185–188

copy method, 186–187

createXXX methods, 186–187

delete, deleteIfExists methods, 187

encodings in, 186

exists method, 187

lines method, 25, 163

list method, 165

move method, 187

newBufferedXXX, newXXXStream methods,

186

readAllXXX methods, 185

walk method, 165

write method, 185

FileTime class, and legacy classes, 116

FileVisitor interface, 188

FileXXXStream classes, 186

fillInStackTrace method (Throwable), 182

filter method

of Locale, 173

of Stream, 22–23, 25, 28, 42–43, 160

final modifier, in lambdas, 5

finally statement, 181

findXXX methods (Stream), 28

fine, finer, finest methods (Logger), 171

firstDayOfXXX methods (TemporalAdjusters),

107

Flash, 70

flatMap method

of Optional, 30–31, 64

of Stream, 26

Float class

compare method, 190

isXXX methods, 159

sum, max, min methods, 158

FloatProperty class, 74

floorXXX methods (Math), 159–160

FlowPane class (JavaFX), 84

for loop, enhanced, 165

forEach method

adding to collection library, 14

of ConcurrentHashMap, 126–128

of Iterable, 14, 161

of Map, 161

of Stream, 34

forEachOrdered method (Stream), 34

forEachRemaining method (Iterator), 161

forEachXXX methods (ConcurrentHashMap),

126–128

forLanguageTag method (Locale), 173

format method

of Bindings, 79

of DateTimeFormatter, 112

formatters, for date/time values

custom, 114

predefined, 112–113

from method (Instant, ZonedDateTime), 115

Function interface, 43, 51

identity method, 35

function keyword (JavaScript), 146

function types

generic, 50

using wildcards for, 62

functional interfaces, 6–8, 42–43

annotating, 7

as return type, 53–54

choosing, 48, 50–53

composing, 54, 63

conversion to, 6

defining, 52

exceptions in, 60–61

generic, 7

methods inabstract, 6

methods innonabstract, 50

parallelizing, 57–58

processed lazily, 56–57

functional programming, 1

@FunctionalInterface annotation, 7, 52

Future interface, 130

futures

combining multiple, 133–134

completable, 130–134

composing, 132–134

fx:id attribute (FXML), 89

Index204

FXML, 86–90

constructing elements in, 87

initialization in, 89

writing files in, 87

@FXML annotation, 88

G
GaussianBlur class (JavaFX), 94

generate method (Stream), 24, 39

generic types

and arrays, 10

and lambdas, 61–62

type use annotations in, 170

generic wrappers, 60

get method

of ConcurrentHashMap, 124

of LongAccumulator, 122

of ObservableXXXValue, 78

of Path, 184–185

of property classes, 75

getAndXXX methods (AtomicXXX), 121

getAnnotation, getAnnotationsByType methods

(AnnotatedElement), 168

getAsXXX methods (OptionalXXX classes),

40

getAverage method (XXXSummaryStatistics), 34

getBytes method (String), 185–186

getEncoder, getXXXEncoder methods (Base64),

166

getFileName method (Path), 185

getGlobal, getLogger methods (Logger), 193

getMax method (XXXSummaryStatistics), 34

getObject method (ResultSet, Statement), 174

getParent, getRoot (Path), 185

getStackTrace method (Throwable), 182

getSuppressed method (Throwable), 181–182

getters/setters

in JavaFX, 73–75

in Nashorn, 141

getValue method (property classes), 75, 78

getXXX methods (Date and Time API),

105–106, 108, 111–112

GlassFish administration tool, 150

Glow class (JavaFX), 94

greaterThan, greaterThanOrEqual methods

(Bindings), 78

GregorianCalendar class, 115

toZonedDateTime method, 115

GridBagLayout control (Swing), 82

GridPane class (JavaFX), 82–84, 87

alignment in, 83

using CSS with, 90–91

Groovy programming language

executing scripts in, 140

JavaFX bindings in, 86

groupingBy method (Collectors), 36–39

groupingByConcurrent method (Collectors), 41

GStreamer framework, 95–97

H
handle method (CompletableFuture), 133

hash method (Arrays, Objects), 189

hash tables, 123

hashCode method

of Objects, 189

of primitive types, 158

hasNext method (JavaScript), 146–147

HBox class (JavaFX), 81–82, 84, 87

alignment and padding in, 83

using CSS with, 91

here documents, 150

HTML (HyperText Markup Language),

80

HTML 5, 190, 192

HTTP authentication, 166

I
IANA (Internet Assigned Numbers

Authority), 109

identity method (Function), 35

identity values, 32

ifPresent method (Optional), 29

IllegalStateException, 35

images, transforming, 49–57

parallel, 57–58

implements specification, type use

annotations in, 170

in-car displays, user interfaces for, 71

increment method (LongAdder), 121–122

incrementAndGet method (AtomicXXX), 120

incrementExact method (Math), 159

info method (Logger), 49, 171

205Index

inheritIO method (ProcessBuilder), 194

init method (Application), 153

Initializable interface, 88

inner classes

capturing values in, 9, 12

vs. lambdas, 6

InputStream class, 186

instanceof keyword, and type use

annotations, 170

Instant class, 102

and legacy classes, 116

arithmetic operations, 103–104

from method, 115

immutable, 104

now method, 102

Integer class

compare method, 3–6, 189–190

decode method, 193

parseInt method, 193

sum, max, min methods, 158

toUnsignedLong method, 158

valueOf method, 193

xxxUnsigned methods, 159

integer ranges, 39

integer remainders, 159–160

IntegerProperty class, 74–75

interfaces

functional, 42–43, 48, 50–53

implemented in JavaScript, 146–148

methods in, 16–17

default, 14–16

name clashes between, 15

nonabstract, 6

Introspector class, 73

ints method (Random), 40

IntStream class, 39–40

boxed method, 40

mapToInt method, 39–40

of method, 39

range, rangeClosed methods, 39

sum, average, max, min methods, 40

summaryStatistics method, 40

toArray method, 40

IntSummaryStatistics class, 34, 40

intValueExact method (BigInteger), 159

IntXXX interfaces, 43, 53

InvalidationListener interface, 75, 77, 153

InvalidPathException, 184

IOException, 164

isEmpty, isNotEmpty, isNull, isNotNull methods

(Bindings), 78

isEqual method (Predicate), 50

isFinite, isInfinite, isNaN methods (Double,

Float), 159

isLoggable method (Logger), 49

isNull method (Objects), 171

isPresent method (Optional), 28–29

isXXX methods (Date and Time API), 105,

108, 112

isZero, isNegative methods (Instant, Duration),

103

Iterable interface, 165

forEach method, 14, 161

iterate method (Stream), 24, 27, 39

Iterator interface, forEachRemaining method,

161

iterators, 33

for random numbers, 146–147

J
Java Media Framework, 95

Java programming language

executing external commands from, 194

implementation bugs in, 191

simplicity and consistency of, 4

Java Web Start, 190–192

java, javax, javafx global objects (JavaScript),

141

Java.extend function (JavaScript), 146–147

Java.from function (JavaScript), 145

Java.super function (JavaScript), 148

Java.to function (JavaScript), 144–145

Java.type function (JavaScript), 141–142

java.util.concurrent package, 119, 130

java.util.concurrent.atomic package, 120

java.util.function package, 7

JavaBeans, 73

javadoc comments, redeclaring Object

methods for, 6

JavaFX, 69–98

controls in, 94–97

debugging in, 84, 91

Index206

dimensions in, 82

event handling in, 72–73

getters/setters in, 73–75

labels in, 71

launching, 72

from Nashorn, 152–154

layouts in, 80–86

alignment, 83

cell styling, 84, 91

markup, 86–90

padding property, 82

panes, 80

properties in, 72–75, 153

scenes in, 71

setting fonts in, 71

sliders in, 72–73

special effects in, 91–94

stages in, 71, 140

transitions in, 92

using CSS in, 90–91

versions of, 70

JavaFX Script programming language, 85

JavaScript programming language

accessing Java applications from, 153

anonymous functions in, 146

anonymous subclasses in, 147

bracket notation in, 141, 144–145

calling applets from, 191

catching Java exceptions in, 148

constructing objects in, 141–142

delimiters in, 138

extending Java classes in, 146–148

implementing Java interfaces in,

146–148

inner classes in, 142

instance variables in, 147

invoking:

Java methods in, 140–141

superclasses in, 148

making JavaFX stages visible in, 140

Mozilla implementation of, 146

no method overloading in, 141

numbers in, 143

objects vs. strings in, 143

REPL in, 138–139

semicolons in, 141

static methods in, 142

using with Nashorn, 137–155

javax.annotation.processing package, 169

javax.lang.model package, 169

JDBC (Java Database Connectivity), 174

JDK (Java Development Kit), installed by

users, 192

JEditorPane control (Swing), 95

jjs tool, 138–139

command-line arguments in, 151

executing commands in, 149

-fx option, 152

join method (String), 158

joining method (Collectors), 34

JRuby programming language, 140

jrunscript script shell, 149, 151

JUnit test, automated execution of, 195

JUnitCore class, 195

JVM (Java Virtual Machine), installed by

users, 192

Jython programming language, 140

K
keySet method (ConcurrentHashMap), 128

kiosks, user interfaces for, 71

L
Label class, setFont method, 71

lambda expressions, 1–17, 48–49

accessing variables in, 10–13

and collections, 160

and computed bindings, 79

and functional interfaces, 6

and generics, 61–62

and JavaScript, 146

and method references, 8

annotations in, 5

capturing values by, 11

event handling with, 72

modifiers in, 5

no assigning to a variable of type Object,

7

no-arg, 48

parameter types in, 5

parameters of, 49–50

result type of, 6

207Index

lambda expressions (continued)
scope of, 13

syntax of, 4–5

this keyword in, 13

throwing exceptions in, 58–61

updating counters with, 13

using with map method, 25

vs. inner classes, 6

language range, 173

lastXXX methods (TemporalAdjusters), 107

leap seconds, 102

leap years, 105

length method (Bindings), 78

lessThan, lessThanOrEqual methods (Bindings),

78

limit method (Stream), 26, 41

lines method

of BufferedReader, 164

of Files, 25, 163

lines, reading, 25, 163–164, 185

Lisp programming language, 1

list method (Files), 165

List interface, 17

replaceAll, sort methods, 160–161

ListProperty class, 74

lists

declaring non-null elements of, 169

in Nashorn, 145

LocalDate class, 174

and legacy classes, 116

methods of, 105–106

LocalDateTime class, 109, 174

and legacy classes, 116

atZone method, 109

Locale class

filter method, 173

forLanguageTag method, 173

lookup method, 173

locales, 36, 172–174

default, 112

finding, 173

formatting styles for, 114

LocalTime class, 108–109, 174

and legacy classes, 116

methods of, 108

locks, 122

Logger class

getGlobal, getLogger methods, 193

isLoggable method, 49

log, logp, severe, warning, info, config, fine,

finer, finest methods, 171

Logger.global instance, 193

logging, lazily, 48–49, 171–172

logicalXXX methods (Boolean), 158

Long class

compare method, 190

decode method, 193

parseLong method, 193

sum, max, min methods, 158

valueOf method, 193

xxxUnsigned methods, 159

LongAccumulator class, 121

accumulate, get methods, 122

LongAdder class, 121, 125

add, sum methods, 121

increment method, 121–122

LongProperty class, 74

longs method (Random), 40

LongStream class, 39–40

boxed method, 40

mapToLong method, 39

range, rangeClosed methods, 39

sum, average, max, min methods, 40

summaryStatistics method, 40

toArray method, 40

LongSummaryStatistics class, 34, 40

longValueExact method (BigInteger), 159

LongXXX interfaces, 43, 53

M
map method

of Optional, 29, 63

of Stream, 25, 63

Map interface, methods of, 161

mapping method (Collectors), 38

mappingCount method (ConcurrentHashMap), 123

MapProperty class, 74

maps

concurrent, 36

in Nashorn, 145

merging, 34–36, 41

mapToInt method (Stream), 32

Index208

mapToXXX methods (XXXStream), 39–40

Math class, 159–160

max method

of Bindings, 78

of integer types, 158

of streams, 28, 40

maxBy method (Collectors), 37

Media, MediaXXX classes (JavaFX), 95–96

merge method (ConcurrentHashMap), 125–126

messages, constructed lazily, 171–172

method references, 8–9

this, super parameters in, 9

type use annotations in, 170

methods

abstract, in functional interfaces, 6

customizing functions passed to, 54

default, 14–16

adding to interfaces, 16

parameters of, available through

reflection, 170–171

reflective, exceptions in, 183

resolving ambiguities in, 15–16

static, adding to interfaces, 16–17

Microsoft Office, 139

min method

of Bindings, 78

of integer types, 158

of streams, 28, 40

minus, minusXXX methods (Date and Time

API), 103, 105–106, 108, 111

monads, 26, 63–64

MonthDay class, 106

move method (Files), 187

Mozilla JavaScript implementation, 146

multipliedBy method (Instant, Duration), 103

multiply method (Bindings), 78

multiplyExact method (Math), 159

N
named capturing groups, 172

Nashorn engine, 137–155

anonymous subclasses in, 147

arrays in, 144–145

catching Java exceptions in, 148

class objects in, 142

extending Java classes in, 146–148

getters/setters in, 141

implementing Java interfaces in,

146–148

instance variables in, 147

invoking:

Java methods in, 140–141

superclasses in, 148

launching JavaFX from, 152–154

lists and maps in, 145

numbers in, 143

running from:

command line, 138–139

Java, 139–140

shell scripting in, 148–152

strings in, 142–143

naturalOrder method (Comparator), 162

NavigableXXX classes, 162

negate method

of Bindings, 78

of Predicate, 50

negated method (Instant, Duration), 103

negateExact method (Math), 159

new keyword, in constructor references, 9

new operator (JavaScript), 142, 144, 147

newBufferedXXX, newXXXStream methods

(Files), 186

newKeySet method (ConcurrentHashMap), 128

next method (JavaScript), 146–147

next, nextOrSame methods (TemporalAdjusters),

107

nextXXX methods (Math), 160

NIO (New I/O) library, 183

nominal typing, 50

noneMatch method (Stream), 28

noninterference, of stream operations, 42

@NonNull annotation, 169

nonNull method (Objects), 171

normalize method (Path), 185

NoSuchElementException, 29

not method (Bindings), 78

notEqual, notEqualIgnoreCase methods (Bindings),

78

now method (Date and Time API), 102–103,

105, 108, 111

@Nullable annotation, 169

NullPointerException, 28, 169, 194

209Index

null-safe equality testing, 188

nullXXX methods (Comparator), 162

Number type (JavaScript), 143

numbers, 158–159

arithmetic operations on, 158

comparing, 162, 189–190

converting from strings, 193

unsigned, 158–159

O
Object class

clone method, 6

equals method, 16

no redefining for methods of, 16

toString method, 6, 16, 189

object-oriented programming, 1

ObjectProperty class, 74

Objects class

equals method, 188

hash method, 189

hashCode method, 189

isNull, nonNull methods, 171

requireNonNull method, 172, 194

ObjXXXConsumer interfaces, 53

Observable, ObservableValue interfaces, 77

ObservableXXXValue interfaces, 78

of method

of Date and Time API, 105, 108–109–111

of IntStream, 39

of Optional, 30

of Stream, 24

ofDateAdjuster method (TemporalAdjusters), 107

OffsetDateTime class, 112

ofInstant method (ZonedDateTime), 111

ofLocalizedXXX methods (DateTimeFormatter),

112

ofNullable method (Optional), 30

ofPattern method (DateTimeFormatter), 114

Optional class, 28–31

creating values of, 30

empty method, 30

flatMap method, 30–31, 64

ifPresent method, 29

isPresent method, 28–29

map method, 29, 63

of, ofNullable methods, 30

OptionalXXX classes, 40

or method

of Bindings, 78

of Predicate, 50

org global object (JavaScript), 141

$OUT, in shell scripts, 149

P
Package object (JavaScript), 141

parallel method (Stream), 40

parallelism threshold, 126

parallelStream method (Collection), 23, 40, 160

ParallelTransition class (JavaFX), 93

parallelXXX methods (Arrays), 128–129

Parameter class, 171

parse method (DateTimeFormatter), 115

parseXXX methods (integer types), 193

partitioningBy method (Collectors), 36–37, 39

Path interface, 16–17, 184–185

get, getXXX methods, 184–185

normalize method, 185

relativize method, 184

resolve, resolveSibling methods, 184

toAbsolutePath, toFile methods, 185

paths

absolute, 185

combining, 185

for directories, 184

resolving, 184

Paths class, 16–17

Pattern class

asPredicate method, 172

splitAsStream method, 24, 172

peek method (Stream), 27, 34

performance, and atomic values, 121

Period class, 106

PHP programming language, 140

plus, plusXXX methods (Date and Time

API), 103, 105–106, 108, 110–111

Predicate interface, 42–43, 50–51

and, or, negate, isEqual methods, 50

previous, previousOrSame methods

(TemporalAdjusters), 107

primitive types

comparing, 162

specializations for, 52

Index210

streams of, 39–40, 161

transforming hash map values to, 128

wrappers for, 158

println method (System.out), 8

Process class, waitFor method, 194

ProcessBuilder class, 194–195

inheritIO method, 194

redirectXXX methods, 194

Programmer’s Day, 105

properties (JavaFX), 72–80

bound, 73

computed, 76

enumerating, 73

final, 74

implementing, 74

listeners for, 72, 74, 153

numeric, using ChangeListener for, 75

updating automatically, 75–80

Property interface, 74

put method (ConcurrentHashMap), 124

putIfAbsent method

of ConcurrentHashMap, 125

of Map, 161

R
race conditions, 41, 119–120

Random class, methods of, 40

random numbers, 40, 146–147

range, rangeClosed methods (XXXStream), 39

readAllXXX methods (Files), 185

readLine function (shell scripts), 151

redirectXXX methods (ProcessBuilder), 194

reduce, reduceXXX methods (ConcurrentHashMap),

31–33, 126–128

reducing method (Collectors), 38

reductions, 28, 31–32

reflection, 170–171

reflective methods, 183

ReflectiveOperationException, 183

regular expressions, 172

relativize method (Path), 184

rem units, 82

remainderUnsigned method (Integer, Long), 159

remove method (Map), 161

removeIf method (Collection), 160–161

@Repeatable annotation, 168

REPL (“read-eval-print” loop), 138–139

replace method

of ConcurrentHashMap, 124

of Map, 161

replaceAll method

of List, 160–161

of Map, 161

repurposing attacks, 191

requireNonNull method (Objects), 172, 194

resolve, resolveSibling methods (Path), 184

ResultSet class, get/setObject methods, 174

return statement, in lambdas, 5

reverseOrder, reversed methods (Comparator), 162

Rhino engine, 137

rlwrap tool, 139

RotateTransition class (JavaFX), 92–93

runAfterXXX methods (CompletableFuture), 134

runAsync method (CompletableFuture), 131

Runnable interface, 51

and lambdas, 6

run method, 2

Runtime class, exec method, 194

RuntimeException class, disabling suppressed

exceptions in, 182

S
sandbox, 190–191

Scala programming language

covariant type parameters in, 61

default methods in, 15

JavaFX bindings in, 86

REPL in, 139

ScaleTransition class (JavaFX), 92

Scanner class, 164, 182

SceneBuilder program, 80, 87

scheduling applications

and time zones, 104, 109

computing dates for, 107–108

Scheme programming language, 1

executing scripts in, 140

ScriptEngine interface, createBindings, eval

methods, 140

search, searchXXX methods (ConcurrentHashMap),

126–128

seconds, leap, 102

security, 190–193

211Index

select, selectXXX methods (Bindings), 79

SequentialTransition class (JavaFX), 93

set, setValue methods (property classes), 75

setFont method (Label), 71

setObject method (ResultSet, Statement), 174

SetProperty class, 74

sets

flattening, 26, 63

operations on, for integers, 195

threadsafe, 128

severe method (Logger), 171

shebang, 151

shell scripts, 148–152

command-line arguments in, 151

environment variables in, 151

string interpolation in, 150

Short class

compare method, 190

decode method, 193

parseShort method, 193

sum, max, min methods, 158

toUnsignedXXX methods, 158

valueOf method, 193

shortValueExact method (BigInteger), 159

SimpleXXXProperty classes, 74

size method (Bindings), 78

SIZE static field, 158

skip method (Stream), 26

sleep method (Thread), 8

slice method (JavaScript), 142

sort method

of Arrays, 3, 6

of Collections, 27

of List, 160–161

sorted method (Stream), 27

sorting

people, by name, 161–162

strings by length, 2–5

split method (String), 158

splitAsStream method (Pattern), 24, 172

spliterator method (Collection), 160

square root, computing, 31

stack traces

disabling, 182

working back from, 194

StackPane class (JavaFX), 84

$STAGE, in shell scripts, 152

StampedLock class, 122–123

start method

of Application, 71

of Thread, 2

Statement class, methods of, 174

static methods, adding to interfaces, 16–17

stop method (Application), 153

stream method

of Arrays, 39

of BitSet, 161, 196

of Collection, 22–24, 160

Stream interface

collect method, 33

concat method, 26

count method, 22–23, 28

distinct method, 27, 41, 160

filter method, 22–23, 25, 28, 42–43, 160

findXXX methods, 28

flatMap method, 26

generate method, 24, 39

iterate method, 24, 27, 39

limit method, 26, 41

map method, 25, 63

mapToInt method, 32

max, min methods, 28

of method, 24

parallel method, 40

peek method, 27, 34

skip method, 26

sorted method, 27

toArray method, 10, 33

unordered method, 41

xxxMatch methods, 28

streams, 21–43

closing, 25, 164

combining, 26

converting:

between objects and primitive types

of, 39–40

to arrays, 33

creating, 24–25

debugging, 27

empty, 32

extracting substreams from, 26

flattening, 26

Index212

infinite, 23–24, 27

cutting, 26

intermediate operations for, 23

noninterference of, 42

null checks for, 171

of directory entries, 165

of primitive type values, 39–40, 161

of random numbers, 40

ordered, 41

parallel, 23, 28, 34, 40–42

pipeline of, 27

processed lazily, 23, 27, 42

reductions of, 28

sorting, 27

standard I/O, redirecting to files, 194

terminal operation for, 23

threadsafe operations on, 41

transformations of, 25–26

stateful, 27

stateless, 26–27

vs. collections, 22

with no elements, 24

StrictMath class, 160

String class

charAt method, 25

getBytes method, 185–186

join, split methods, 158

toLowerCase method, 25

valueOf method, 189

string interpolation, 150

StringProperty class, 74–75

strings

combining, 158

converting to numbers, 193

filtering by regular expressions, 172

sorting by length, 2–5

splitting, 24, 158, 172

transforming to lowercase, 25

subtract method (Bindings), 78

subtractExact method (Math), 159

sum method

of integer types, 158

of LongAdder, 121

of XXXStream, 40

summarizingXXX methods (Collectors), 34

summaryStatistics method (XXXStream), 40

summingXXX methods (Collectors), 37

super keyword

capturing in method references, 9

for function types, 62

superclasses

for related exceptions, 183

type use annotations in, 170

Supplier interface, 43, 48, 51

supplyAsync method (CompletableFuture),

131–132

Swing, 70, 80

naming controls in, 71

showing HTML in, 95

synchronizedNavigableXXX methods

(Collections), 162

T
Temporal interface, with method, 107

TemporalAdjuster interface, 107

TemporalAdjusters class, 107

thenAccept method (CompletableFuture), 132–133

thenAcceptBoth method (CompletableFuture), 134

thenApply method (CompletableFuture), 63,

130–133

thenApplyAsync method (CompletableFuture),

131–133

thenCombine method (CompletableFuture), 134

thenComparing method (Comparator), 161–162

thenCompose method (CompletableFuture),

132–133

thenRun method (CompletableFuture), 133

this keyword

capturing in method references, 9

in lambda expressions, 13

Thread class

constructor for, 147

sleep method, 8

start method, 2

threads

atomic mutations in, 120–123

concurrency enhancements for, 119–135

executing:

code in, 2

increments concurrently, 12–13

locking, 120–123

race conditions in, 41

213Index

threads (continued)
reading web pages in, 130

starting new, 2, 9

terminating upon an exception, 59

updating hash tables in, 123–128

Throwable class

addSuppressed method, 182

getStackTrace, fillInStackTrace methods, 182

getSuppressed method, 181–182

TilePane class (JavaFX), 84

time

between two instants, 103

current, 102

daylight savings, 109–112

formatting, 112–115

local, 108–109

measuring, 103

parsing, 115

zoned, 109–112

Time class, 115, 174

Timestamp class, 115, 174

timestamps, 112

using instants as, 103

TimeZone class, and legacy classes, 116

toAbsolutePath method (Path), 185

toArray method

of Collection, 61

of Stream, 10, 33

of XXXStream, 40

toCollection method (Collectors), 33

toConcurrentMap method (Collectors), 36

toFile method (Path), 185

toFormat method (DateTimeFormatter), 114

toInstant method

of Date, 115

of ZonedDateTime, 109, 112

toIntExact method (Math), 159

toLocalXXX methods (ZonedDateTime), 112

toLowerCase method (String), 25

toMap method (Collectors), 34–36

toPath method (File), 185

toSet method (Collectors), 33, 37

toString method (Object), 16

null-safe calling, 189

redeclaring, 6

toUnsignedXXX methods (integer types), 158

toXXX methods (Duration), 103

toXXXArray methods (BitSet), 196

ToXXXBiFunction interfaces, 53

ToXXXFunction interfaces, 43, 53

toXXXOfDay methods (LocalTime), 108

toZonedDateTime method (GregorianCalendar),

115

tryOptimisticRead method (StampedLock),

122–123

try-with-resources statement, 180–181

closing:

files with, 163–165

streams with, 25, 164

for JUnit tests, 195

suppressed exceptions in, 181–182

type parameters, 61

type use annotations, 169–170

U
UnaryOperator interface, 43, 51–52

compose method, 55–56

unbind, unbindBidirectional methods

(XXXProperty), 76

UncheckedIOException, 164

unmodifiableNavigableXXX methods

(Collections), 162

unordered method (Stream), 41

until method (LocalDate), 105–106

updateAndGet method (AtomicXXX), 121

URLClassLoader class, 195

use-site variance. See wildcards

UTC (coordinated universal time), 110

V
valueAt, XXXValueAt methods (Bindings), 79

valueOf method

of BitSet, 196

of integer types, 193

of String, 189

valueProperty method (JavaFX), 72

values

captured:

by inner classes, 12

by lambda expressions, 11

grouping, 36–38

partitioning, 36–37

Index214

variables

accessing in lambdas, 10–13

atomic mutations of, 120–123

effectively final, 12

VB Script programming language,

139

VBox class (JavaFX), 82, 84

vendor lock, 139

videos, playing, 95–97

W
waitFor method (Process), 194

walk method (Files), 165

warning method (Logger), 171

web pages

layout of, 80

reading:

from URL, 63, 132

in a separate thread, 130

WebKit engine, 95

WebView class (JavaFX), 95

whenComplete method (CompletableFuture), 133

wildcards, 61

type use annotations in, 170

with method (Temporal), 107

withLocale method (DateTimeFormatter), 112

withXXX methods (Date and Time API),

105, 108, 111

write method (Files), 185

Y
Year, YearMonth classes, 106

years, leap, 105

Z
ZonedDateTime class

and legacy classes, 115–116

methods of, 109–112, 115

215Index

	Contents
	Preface
	About the Author
	3 PROGRAMMING WITH LAMBDAS
	3.1 Deferred Execution
	3.2 Parameters of Lambda Expressions
	3.3 Choosing a Functional Interface
	3.4 Returning Functions
	3.5 Composition
	3.6 Laziness
	3.7 Parallelizing Operations
	3.8 Dealing with Exceptions
	3.9 Lambdas and Generics
	3.10 Monadic Operations
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

